PRE-REAM DRILL SIZE TABLE FOR REAMING | Material | Ø up to 6 mm | Ø up to 10 mm | Ø up to 16 mm | Ø up to 25 mm | Ø over 25 mm | |------------------------------------|--------------|---------------|---------------|---------------|--------------| | Steels up to 700 N/mm ² | 0,1 - 0,2 | 0,2 | 0,2 - 0,3 | 0,3 - 0,4 | 0,4 | | Steels 700 - 1000 N/mm² | 0,1 - 0,2 | 0,2 | 0,2 | 0,3 | 0,3 - 0,4 | | Cast steel | 0,1 - 0,2 | 0,2 | 0,2 | 0,2 - 0,3 | 0,3 - 0,4 | | Cast iron GG | 0,1 - 0,2 | 0,2 | 0,2 - 0,3 | 0,3 - 0,4 | 0,3 - 0,4 | | Cast iron GGG | 0,1 - 0,2 | 0,2 | 0,3 | 0,3 - 0,4 | 0,4 | | Copper | 0,1 - 0,2 | 0,2 - 0,3 | 0,3 - 0,4 | 0,4 | 0,4 - 0,5 | | Brass - Bronze | 0,1 - 0,2 | 0,2 | 0,2 - 0,3 | 0,3 | 0,3 - 0,4 | | Light alloys | 0,1 - 0,2 | 0,2 - 0,3 | 0,3 - 0,4 | 0,4 | 0,4 - 0,5 | | Plastics, hard | 0,1 - 0,2 | 0,2 | 0,4 | 0,4 - 0,5 | 0,5 | | Plastics, soft | 0,1 - 0,2 | 0,2 | 0,2 | 0,3 | 0,3 - 0,4 | Stock allowance (recommended values in mm) Due to the efficient action of the spiral, the values for quick spiral reamers may be increased by 50 to 100%. ## **APPLICATION INDICATIONS AND SOLUTIONS FOR REAMING** | Problem | Cause | Solution | | |--|--|---|--| | Diameter is too large | Cutting speed is too high Feed rate is too high Insufficient lubricating coolant delivery Incorrect lubricating coolant composition Point is too short or very uneven Tool or machine spindle rotation incorrect Due to low-density or flexible structure, the working material enlarges | Reduce cutting speed Reduce feed rate Ensure good lubricating coolant delivery Ensure correct lubricating coolant composition Lengthen point or reduce point angle Centrally clamp or guide the reamer. Use a reamer chuck Reduce reamer diameter | | | Diameter is too narrow | Cutting speed is too low Feed rate is too low Chip removal rate is too low Point is too long Tool is ground smooth The working material is of high density or has an inflexible structure Reamer of insufficient size Too much heat created when reaming. Shrinking borehole Tool diameter too small | Increase cutting speed Increase feed rate Increase machining allowance Select a smaller point Check the tool and replace in good time Increase reamer diameter Select a higher allowance Increase lubricating coolant delivery Select the correct diameter | | | Heavy wear | Insufficient size | Select a larger diameter | | | Borehole is not round
or is conical | Incorrect positioning in the machine spindle Alignment error between the tool and the borehole Asymmetrical point angle Incorrect tool run-out Clearance angle too great Point is not round Insufficient guide | Check the spindle and correct its position Use front-cutting reamers Re-sharpen point angle Centrally clamp tool, use reamer chuck and guide Reduce clearance angle when re-sharpening Evenly sharpen and round the point | | | Poor surface quality | Worn tool Front rake angle is too small Cutting speed is too low Feed rate is too low Workpiece tends to stick (built-up edge) Cutting exit is sharp-edged Insufficient lubricating coolant delivery Incorrect lubricating coolant composition Cutting is uneven Defective point | Replace or re-sharpen tool in good time Re-sharpen correctly Increase cutting speed Increase feed rate Increase clearance angle and front rake angle; use highly fluid lubricant Round and smooth the borehole exit Ensure good lubricating coolant delivery Ensure correct lubricating coolant composition Grind the point and guide piece to an evenly round shape or to a tapered shape Finely smooth or lap the point round and smooth the guide piece joint | | | The tool jams and breaks | Borehole is too narrowBevel width is too greatShaft is too shortWorn tool | Reduce material cross-section Check the tool and replace if necessary Check the tool and replace if necessary Replace or re-sharpen tool in good time | | | Borehole exit too narrow | Feed rate when removing the reamer from the borehole is too high | Reduce feed rate shortly before passing through
or use even feed rate | | | Broken off or deformed driver | Incorrect position between shaft
and clamping device | Keep shaft and clamping device clean
and undamaged | |